Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 625(7994): 352-359, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992756

RESUMO

It was recently shown that bacteria use, apart from CRISPR-Cas and restriction systems, a considerable diversity of phage resistance systems1-4, but it is largely unknown how phages cope with this multilayered bacterial immunity. Here we analysed groups of closely related Bacillus phages that showed differential sensitivity to bacterial defence systems, and discovered four distinct families of anti-defence proteins that inhibit the Gabija, Thoeris and Hachiman systems. We show that these proteins Gad1, Gad2, Tad2 and Had1 efficiently cancel the defensive activity when co-expressed with the respective defence system or introduced into phage genomes. Homologues of these anti-defence proteins are found in hundreds of phages that infect taxonomically diverse bacterial species. We show that the anti-Gabija protein Gad1 blocks the ability of the Gabija defence complex to cleave phage-derived DNA. Our data further reveal that the anti-Thoeris protein Tad2 is a 'sponge' that sequesters the immune signalling molecules produced by Thoeris TIR-domain proteins in response to phage infection. Our results demonstrate that phages encode an arsenal of anti-defence proteins that can disable a variety of bacterial defence mechanisms.


Assuntos
Fagos Bacilares , Bactérias , Proteínas Virais , Fagos Bacilares/classificação , Fagos Bacilares/genética , Fagos Bacilares/imunologia , Fagos Bacilares/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/imunologia , Bactérias/virologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Viral/genética , DNA Viral/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(40): e2310862120, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37756332

RESUMO

Gram-positive bacteria use SigI/RsgI-family sigma factor/anti-sigma factor pairs to sense and respond to cell wall defects and plant polysaccharides. In Bacillus subtilis, this signal transduction pathway involves regulated intramembrane proteolysis (RIP) of the membrane-anchored anti-sigma factor RsgI. However, unlike most RIP signaling pathways, site-1 cleavage of RsgI on the extracytoplasmic side of the membrane is constitutive and the cleavage products remain stably associated, preventing intramembrane proteolysis. The regulated step in this pathway is their dissociation, which is hypothesized to involve mechanical force. Release of the ectodomain enables intramembrane cleavage by the RasP site-2 protease and activation of SigI. The constitutive site-1 protease has not been identified for any RsgI homolog. Here, we report that RsgI's extracytoplasmic domain has structural and functional similarities to eukaryotic SEA domains that undergo autoproteolysis and have been implicated in mechanotransduction. We show that site-1 proteolysis in B. subtilis and Clostridial RsgI family members is mediated by enzyme-independent autoproteolysis of these SEA-like domains. Importantly, the site of proteolysis enables retention of the ectodomain through an undisrupted ß-sheet that spans the two cleavage products. Autoproteolysis can be abrogated by relief of conformational strain in the scissile loop, in a mechanism analogous to eukaryotic SEA domains. Collectively, our data support the model that RsgI-SigI signaling is mediated by mechanotransduction in a manner that has striking parallels with eukaryotic mechanotransducive signaling pathways.


Assuntos
Bacillus subtilis , Mecanotransdução Celular , Proteólise , Parede Celular , Eucariotos
3.
bioRxiv ; 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37425962

RESUMO

Gram-positive bacteria use SigI/RsgI-family sigma factor/anti-sigma factor pairs to sense and respond to cell wall defects and plant polysaccharides. In Bacillus subtilis this signal transduction pathway involves regulated intramembrane proteolysis (RIP) of the membrane-anchored anti-sigma factor RsgI. However, unlike most RIP signaling pathways, site-1 cleavage of RsgI on the extracytoplasmic side of the membrane is constitutive and the cleavage products remain stably associated, preventing intramembrane proteolysis. The regulated step in this pathway is their dissociation, which is hypothesized to involve mechanical force. Release of the ectodomain enables intramembrane cleavage by the RasP site-2 protease and activation of SigI. The constitutive site-1 protease has not been identified for any RsgI homolog. Here, we report that RsgI's extracytoplasmic domain has structural and functional similarities to eukaryotic SEA domains that undergo autoproteolysis and have been implicated in mechanotransduction. We show that site-1 proteolysis in B. subtilis and Clostridial RsgI family members is mediated by enzyme-independent autoproteolysis of these SEA-like (SEAL) domains. Importantly, the site of proteolysis enables retention of the ectodomain through an undisrupted ß-sheet that spans the two cleavage products. Autoproteolysis can be abrogated by relief of conformational strain in the scissile loop, in a mechanism analogous to eukaryotic SEA domains. Collectively, our data support the model that RsgI-SigI signaling is mediated by mechanotransduction in a manner that has striking parallels with eukaryotic mechanotransducive signaling pathways. SIGNIFICANCE: SEA domains are broadly conserved among eukaryotes but absent in bacteria. They are present on diverse membrane-anchored proteins some of which have been implicated in mechanotransducive signaling pathways. Many of these domains have been found to undergo autoproteolysis and remain noncovalently associated following cleavage. Their dissociation requires mechanical force. Here, we identify a family of bacterial SEA-like (SEAL) domains that arose independently from their eukaryotic counterparts but have structural and functional similarities. We show these SEAL domains autocleave and the cleavage products remain stably associated. Importantly, these domains are present on membrane-anchored anti-sigma factors that have been implicated in mechanotransduction pathways analogous to those in eukaryotes. Our findings suggest that bacterial and eukaryotic signaling systems have evolved a similar mechanism to transduce mechanical stimuli across the lipid bilayer.

4.
Nat Commun ; 14(1): 3928, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402742

RESUMO

Tissue-resident memory (TRM) CD8+ T cells are largely derived from recently activated effector T cells, but the mechanisms that control the extent of TRM differentiation within tissue microenvironments remain unresolved. Here, using an IFNγ-YFP reporter system to identify CD8+ T cells executing antigen-dependent effector functions, we define the transcriptional consequences and functional mechanisms controlled by TCR-signaling strength that occur within the skin during viral infection to promote TRM differentiation. TCR-signaling both enhances CXCR6-mediated migration and suppresses migration toward sphingosine-1-phosphate, indicating the programming of a 'chemotactic switch' following secondary antigen encounter within non-lymphoid tissues. Blimp1 was identified as the critical target of TCR re-stimulation that is necessary to establish this chemotactic switch and for TRM differentiation to efficiently occur. Collectively, our findings show that access to antigen presentation and strength of TCR-signaling required for Blimp1 expression establishes the chemotactic properties of effector CD8+ T cells to promote residency within non-lymphoid tissues.


Assuntos
Linfócitos T CD8-Positivos , Memória Imunológica , Receptores de Antígenos de Linfócitos T , Pele , Viroses , Linfócitos T CD8-Positivos/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Pele/imunologia , Pele/virologia , Viroses/imunologia , Movimento Celular , Feminino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Interferon gama/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Receptores CXCR6/metabolismo
5.
bioRxiv ; 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37292831

RESUMO

CBASS is an anti-phage defense system that protects bacteria from phage infection and is evolutionarily related to human cGAS-STING immunity. cGAS-STING signaling is initiated by viral DNA but the stage of phage replication which activates bacterial CBASS remains unclear. Here we define the specificity of Type I CBASS immunity using a comprehensive analysis of 975 operon-phage pairings and show that Type I CBASS operons composed of distinct CD-NTases, and Cap effectors exhibit striking patterns of defense against dsDNA phages across five diverse viral families. We demonstrate that escaper phages evade CBASS immunity by acquiring mutations in structural genes encoding the prohead protease, capsid, and tail fiber proteins. Acquired CBASS resistance is highly operon-specific and typically does not affect overall fitness. However, we observe that some resistance mutations drastically alter phage infection kinetics. Our results define late-stage virus assembly as a critical determinant of CBASS immune activation and evasion by phages.

6.
Nature ; 611(7935): 326-331, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36174646

RESUMO

The Toll/interleukin-1 receptor (TIR) domain is a key component of immune receptors that identify pathogen invasion in bacteria, plants and animals1-3. In the bacterial antiphage system Thoeris, as well as in plants, recognition of infection stimulates TIR domains to produce an immune signalling molecule whose molecular structure remains elusive. This molecule binds and activates the Thoeris immune effector, which then executes the immune function1. We identified a large family of phage-encoded proteins, denoted here as Thoeris anti-defence 1 (Tad1), that inhibit Thoeris immunity. We found that Tad1 proteins are 'sponges' that bind and sequester the immune signalling molecule produced by TIR-domain proteins, thus decoupling phage sensing from immune effector activation and rendering Thoeris inactive. Tad1 can also efficiently sequester molecules derived from a plant TIR-domain protein, and a high-resolution crystal structure of Tad1 bound to a plant-derived molecule showed a unique chemical structure of 1 ''-2' glycocyclic ADPR (gcADPR). Our data furthermore suggest that Thoeris TIR proteins produce a closely related molecule, 1''-3' gcADPR, which activates ThsA an order of magnitude more efficiently than the plant-derived 1''-2' gcADPR. Our results define the chemical structure of a central immune signalling molecule and show a new mode of action by which pathogens can suppress host immunity.


Assuntos
Bactérias , Bacteriófagos , Domínios Proteicos , Receptores de Interleucina-1 , Transdução de Sinais , Receptores Toll-Like , Proteínas Virais , Bactérias/imunologia , Bactérias/metabolismo , Bactérias/virologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/química , Proteínas de Plantas/imunologia , Proteínas de Plantas/metabolismo , Receptores de Interleucina-1/química , Transdução de Sinais/imunologia , Bacteriófagos/química , Bacteriófagos/imunologia , Bacteriófagos/metabolismo , Proteínas Virais/química , Proteínas Virais/imunologia , Proteínas Virais/metabolismo , Receptores Toll-Like/química , Cristalografia por Raios X
7.
Nature ; 605(7910): 522-526, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35395152

RESUMO

The cyclic oligonucleotide-based antiphage signalling system (CBASS) and the pyrimidine cyclase system for antiphage resistance (Pycsar) are antiphage defence systems in diverse bacteria that use cyclic nucleotide signals to induce cell death and prevent viral propagation1,2. Phages use several strategies to defeat host CRISPR and restriction-modification systems3-10, but no mechanisms are known to evade CBASS and Pycsar immunity. Here we show that phages encode anti-CBASS (Acb) and anti-Pycsar (Apyc) proteins that counteract defence by specifically degrading cyclic nucleotide signals that activate host immunity. Using a biochemical screen of 57 phages in Escherichia coli and Bacillus subtilis, we discover Acb1 from phage T4 and Apyc1 from phage SBSphiJ as founding members of distinct families of immune evasion proteins. Crystal structures of Acb1 in complex with 3'3'-cyclic GMP-AMP define a mechanism of metal-independent hydrolysis 3' of adenosine bases, enabling broad recognition and degradation of cyclic dinucleotide and trinucleotide CBASS signals. Structures of Apyc1 reveal a metal-dependent cyclic NMP phosphodiesterase that uses relaxed specificity to target Pycsar cyclic pyrimidine mononucleotide signals. We show that Acb1 and Apyc1 block downstream effector activation and protect from CBASS and Pycsar defence in vivo. Active Acb1 and Apyc1 enzymes are conserved in phylogenetically diverse phages, demonstrating that cleavage of host cyclic nucleotide signals is a key strategy of immune evasion in phage biology.


Assuntos
Bacteriófagos , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Bacteriófago T4/metabolismo , Bacteriófagos/fisiologia , Sistemas CRISPR-Cas/genética , Endonucleases/metabolismo , Escherichia coli/metabolismo , Nucleotídeos Cíclicos/metabolismo , Oligonucleotídeos , Pirimidinas/metabolismo
8.
Nat Microbiol ; 6(1): 44-50, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33199862

RESUMO

Transposon-based strategies provide a powerful and unbiased way to study the bacterial stress response1-8, but these approaches cannot fully capture the complexities of network-based behaviour. Here, we present a network-based genetic screening approach: the transcriptional regulator-induced phenotype (TRIP) screen, which we used to identify previously uncharacterized network adaptations of Mycobacterium tuberculosis to the first-line anti-tuberculosis drug isoniazid (INH). We found regulators that alter INH susceptibility when induced, several of which could not be identified by standard gene disruption approaches. We then focused on a specific regulator, mce3R, which potentiated INH activity when induced. We compared mce3R-regulated genes with baseline INH transcriptional responses and implicated the gene ctpD (Rv1469) as a putative INH effector. Evaluating a ctpD disruption mutant demonstrated a previously unknown role for this gene in INH susceptibility. Integrating TRIP screening with network information can uncover sophisticated molecular response programs.


Assuntos
Antituberculosos/farmacologia , Redes Reguladoras de Genes/genética , Isoniazida/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Transcrição Gênica/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Estresse Fisiológico/fisiologia
9.
Immunohorizons ; 4(1): 1-13, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31896555

RESUMO

CD4+ helper T cells play important roles in providing help to B cells, macrophages, and cytotoxic CD8+ T cells, but also exhibit direct effector functions against a variety of different pathogens. In contrast to CD8+ T cells, CD4+ T cells typically exhibit broader specificities and undergo less clonal expansion during many types of viral infections, which often makes the identification of virus-specific CD4+ T cells technically challenging. In this study, we have generated recombinant vaccinia virus (VacV) vectors that target I-Ab-restricted peptides for MHC class II (MHC-II) presentation to activate CD4+ T cells in mice. Conjugating the lymphocytic choriomeningitis virus immunodominant epitope GP61-80 to either LAMP1 to facilitate lysosomal targeting or to the MHC-II invariant chain (Ii) significantly increased the activation of Ag-specific CD4+ T cells in vivo. Immunization with VacV-Ii-GP61-80 activated endogenous Ag-specific CD4+ T cells that formed memory and rapidly re-expanded following heterologous challenge. Notably, immunization of mice with VacV expressing an MHC-II-restricted peptide from Leishmania species (PEPCK335-351) conjugated to either LAMP1 or Ii also generated Ag-specific memory CD4+ T cells that underwent robust secondary expansion following a visceral leishmaniasis infection, suggesting this approach could be used to generate Ag-specific memory CD4+ T cells against a variety of different pathogens. Overall, our data show that VacV vectors targeting peptides for MHC-II presentation is an effective strategy to activate Ag-specific CD4+ T cells in vivo and could be used to study Ag-specific effector and memory CD4+ T cell responses against a variety of viral, bacterial, or parasitic infections.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Vírus Vaccinia/imunologia , Imunidade Adaptativa , Animais , Antígenos , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/virologia , Epitopos de Linfócito T , Epitopos Imunodominantes , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos
10.
Cell Rep ; 29(10): 2990-2997.e2, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31801067

RESUMO

Tissue-resident memory (TRM) CD8+ T cells are positioned within environmental barrier tissues to provide a first line of defense against pathogen entry, but whether these specialized T cell populations can be readily boosted to increase protective immunity is ill defined. Here, we demonstrate that repeated activation of rare, endogenous TRM CD8+ T cells, using only topical application of antigenic peptide causes delayed-type hypersensitivity and increases the number of antigen-specific TRM CD8+ T cells, specifically in the challenged skin by ∼15-fold. Expanded TRM CD8+ T cells in the skin are derived from memory T cells recruited out of the circulation that became CD69+ tissue residents following a local antigen encounter. Notably, recruited circulating memory CD8+ T cells of a different antigen specificity could be coerced to become tissue resident using a dual-peptide challenge strategy. Expanded TRM CD8+ T cells significantly increase anti-viral protection, suggesting that this approach could be used to rapidly boost tissue-specific cellular immunity.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunidade Celular/imunologia , Pele/imunologia , Animais , Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos T/imunologia , Memória Imunológica/imunologia , Lectinas Tipo C/imunologia , Camundongos , Camundongos Endogâmicos C57BL
11.
PLoS Pathog ; 15(3): e1007633, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30875408

RESUMO

Memory CD8+ T cells in the circulation rapidly infiltrate non-lymphoid tissues following infection and provide protective immunity in an antigen-specific manner. However, the subsequent fate of memory CD8+ T cells after entering non-lymphoid tissues such as the skin during a secondary infection is largely unknown. Furthermore, because expression of CD62L is often used to identify the central memory (TCM) CD8+ T cell subset, uncoupling the physical requirement for CD62L-mediated lymph node homing versus other functional attributes of TCM CD8+ T cells remains unresolved. Here, we show that in contrast to naïve CD8+ T cells, memory CD8+ T cells traffic into the skin independent of CD62L-mediated lymph node re-activation and provide robust protective immunity against Vaccinia virus (VacV) infection. TCM, but not effector memory (TEM), CD8+ T cells differentiated into functional CD69+/CD103- tissue residents following viral clearance, which was also dependent on local recognition of antigen in the skin microenvironment. Finally, we found that memory CD8+ T cells expressed granzyme B after trafficking into the skin and utilized cytolysis to provide protective immunity against VacV infection. Collectively, these findings demonstrate that TCM CD8+ T cells become cytolytic following rapid infiltration of the skin to protect against viral infection and subsequently differentiate into functional CD69+ tissue-residents.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Memória Imunológica/fisiologia , Pele/imunologia , Animais , Antígenos CD/metabolismo , Antígenos CD/fisiologia , Antígenos de Diferenciação de Linfócitos T/metabolismo , Antígenos de Diferenciação de Linfócitos T/fisiologia , Linfócitos T CD8-Positivos/virologia , Feminino , Selectina L/metabolismo , Lectinas Tipo C/metabolismo , Lectinas Tipo C/fisiologia , Linfonodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pele/virologia , Subpopulações de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/fisiologia , Vírus Vaccinia/imunologia , Vírus Vaccinia/patogenicidade
12.
Curr Opin Virol ; 28: 12-19, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29080420

RESUMO

Epicutaneous delivery of vaccinia virus (VacV) by scarification of the skin generates robust and durable protective immunity, which was ultimately responsible for eradicating smallpox from the human race. Therefore, infection of the skin with VacV is often used in experimental model systems to study the activation of adaptive immunity, as well as the development and functional features of immunological memory. Here, we describe recent advances using this viral infection to identify and characterize the mechanisms regulating the activation and trafficking of cytotoxic CD8+ T cells into the inflamed skin, the migratory features of CD8+ T cells within the skin microenvironment, and finally, their subsequent differentiation into tissue-resident memory cells.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica , Pele/imunologia , Pele/virologia , Vírus Vaccinia/imunologia , Imunidade Adaptativa , Administração Cutânea , Animais , Diferenciação Celular , Movimento Celular/imunologia , Humanos , Ativação Linfocitária , Camundongos , Pele/patologia
13.
Sci Immunol ; 2(16)2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-29030501

RESUMO

Trafficking of memory CD8+ T cells out of the circulation is essential to provide protective immunity against intracellular pathogens in nonlymphoid tissues. However, the molecular mechanisms that dictate the trafficking potential of diverse memory CD8+ T cell populations are not completely defined. We show that after infection or inflammatory challenge, central memory (TCM) CD8+ T cells rapidly traffic into nonlymphoid tissues, whereas most effector memory cells remain in the circulation. Furthermore, we demonstrate that cellular migration of memory CD8+ T cells into nonlymphoid tissues is driven by interleukin-15 (IL-15)-stimulated enzymatic synthesis of core 2 O-glycans, which generates functional ligands for E- and P-selectins. Given that IL-15-stimulated expression of glycosyltransferase enzymes is largely a feature of TCM CD8+ T cells, this allows TCM to selectively migrate out of the circulation and into nonlymphoid tissues. Collectively, our data indicate that entry of memory CD8+ T cells into inflamed, nonlymphoid tissues is primarily restricted to TCM cells that have the capacity to synthesize core 2 O-glycans.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica , Polissacarídeos/imunologia , Animais , Linfócitos T CD8-Positivos/enzimologia , Movimento Celular , Citoplasma/imunologia , Citoplasma/virologia , Inflamação , Interleucina-15/genética , Interleucina-15/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Camundongos , Polissacarídeos/biossíntese
14.
Front Immunol ; 8: 600, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28596771

RESUMO

Selectins constitute a family of oligosaccharide binding proteins that play critical roles in regulating the trafficking of leukocytes. In T cells, L-selectin (CD62L) controls the capacity for naive and memory T cells to actively survey peripheral lymph nodes, whereas P- and E-selectin capture activated T cells on inflamed vascular endothelium to initiate extravasation into non-lymphoid tissues. The capacity for T cells to interact with all of these selectins is dependent on the enzymatic synthesis of complex O-glycans, and thus, this protein modification plays an indispensable role in regulating the distribution and homing of both naive and previously activated T cells in vivo. In contrast to neutrophils, O-glycan synthesis is highly dynamic in T cell populations and is largely controlled by extracellular stimuli such as antigen recognition or signaling though cytokine receptors. Herein, we review the basic principles of enzymatic synthesis of complex O-glycans, discuss tools and reagents for studying this type of protein modification and highlight our current understanding of how O-glycan synthesis is regulated and subsequently impacts the trafficking potential of diverse T cell populations.

15.
J Neurosci ; 32(7): 2388-97, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22396413

RESUMO

Human genetic studies have revealed that neurokinin B (NKB) and its receptor, neurokinin-3 receptor (NK3R), are essential elements for normal reproduction; however, the precise role of NKB-NK3R signaling in the initiation of puberty remains unknown. We investigated here the regulation of Tac2 and Tacr3 mRNAs (encoding NKB and NK3R, respectively) in female rats and demonstrated that their hypothalamic expression is increased along postnatal maturation. At puberty, both genes were widely expressed throughout the brain, including the lateral hypothalamic area and the arcuate nucleus (ARC)/medial basal hypothalamus, where the expression of Tacr3 increased across pubertal transition. We showed that central administration of senktide (NK3R agonist) induced luteinizing hormone (LH) secretion in prepubertal and peripubertal females. Conversely, chronic infusion of an NK3R antagonist during puberty moderately delayed the timing of vaginal opening (VO) and tended to decrease LH levels. The expression of NKB and its receptor was sensitive to changes in metabolic status during puberty, as reflected by a reduction in Tacr3 (and, to a lesser extent, Tac2) expression in the ARC after a 48 h fast. Yet, acute LH responses to senktide in pubertal females were preserved, if not augmented, under fasting conditions, suggesting sensitization of the NKB-NK3R-gonadotropin-releasing hormone signaling pathway under metabolic distress. Moreover, repeated administration of senktide to female rats with pubertal arrest due to chronic undernutrition rescued VO (in ∼50% of animals) and potently elicited LH release. Altogether, our observations suggest that NKB-NK3R signaling plays a role in pubertal maturation and that its alterations may contribute to pubertal disorders linked to metabolic stress and negative energy balance.


Assuntos
Metaboloma/fisiologia , Neurocinina B/fisiologia , Maturidade Sexual/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Núcleo Arqueado do Hipotálamo/metabolismo , Metabolismo Energético/fisiologia , Feminino , Neurocinina B/metabolismo , Ratos , Ratos Wistar , Receptores da Neurocinina-3/metabolismo , Receptores da Neurocinina-3/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...